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Abstract. On the basis of a one-dimensional crysial lattice model the interaction of
a lateral picosecond acoustic video pulse with a system of spins § = % has been
studied. The mechanisms of dispersion and non-linearity due to lattice structure, the
oscillatory anharmonicity of the lattice and the spin—acoustic interaction are taken into
account. Conditions on the lattice parameters which make a steady-state pulse of strain
propagation possible are given. Amplification of a strain video pulse by a system of
inverted spins is predicted.

1. Introduction

In recent years, developing Jaser equipment has made the generation of femtosecond
light pulses possible (Auston et al 1984). Several theoretical studies dedicated to the
interaction between ultrashort electromagnetic pulses and matter have been published
(Belenov ef al 1988, Belenov and Nazarkin 1990, Maimistov and Elyutin 1991, Nakata
1991, Sazonov 1991, Azarenkov et al 1991). The characteristic spatial length scale
‘of such pulses is {, ~ er, =~ 107* cm (where ¢ is the speed of light and 7, is the
temporal pulse duration). At the same time, because of the different mechanisms
of opto-acoustic interaction, ultrashort light signals are able to generate picosecond
acoustic pulses in solids (Akhmanov ¢t a/ 1988, Gusev and Karabutov 1991). These
acoustic signals are video pulses, ie. contain strain waves of nearly one period of
oscillation (Akhmanov ef o/ 1988). Herein, as in the case of femtosecond light pulses,
the slowly varying envelope approximation {Allen and Eberly 1975) is not applicable.
The spatial length scale of such strain pulses is I, ~ a7, >~ 10~°-10~7 cm (where
¢ is the velocity of sound in solids), that is two to three orders of magnitude less
than the corresponding length scale of an optical femtosecond pulse. Since the value
I, is comparable with the interatomic distance in a crystal lattice, then the effects of
spatial dispersion due to the lattice structure are important. The latter statement can
be referred to femiosecond light pulses, since [, 3> h, where h is the constant of a
crystal lattice. Therefore, in further discussion we shall call this mechanism acoustic
dispersion.

Picosecond acoustic pulses are very strong, their inside pressure attaining 1-
100 kbars (Akhmanov ef a/ 1988, Gusev and Karabutov 1991). Therefore, the anhar-
monicity effects of lattice vibrations may have great significance for the propapation of
picosecond strain pulses in solids. We shall call the anharmonicity of lattice vibrations
acoustic non-linearity.
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As is known, magnetic, optic and acoustic coherent spectroscopies developed si-
multaneously. Such phenomena as a photon echo (Kopvillem and Nagibarov 1963,
Kurnit et al 1964), paramagnetic and nuclear magnetic resonances (Pake 1962) and
optical self-induced transparency (McCall and Hahn 1969) have acoustic analogues
(Al'tshuler 1952, Kopvillem 1963, Baranskii 1957, Menes and Bolef 1958, Tucker and
Rampton 1972, Golenishchev-Kutuzov er al 1977, Shiren 1970, Denisenko 1971). So
it is obviously relevant to enquire into the propagation of picosecond strain pulses in
a paramagnetic lattice. The interaction between lattice oscillations and spins causes
an interaction between temporal dispersion and non-linearity which also takes place
on interaction between spins and an clectromagnetic field. We shall call these mecha-
nisms spin-acoustic dispersion and spin-acoustic non-linearity, respectively. Because
of these mechanisms, the spectrum of physics phenomena in picosecond acoustics
must be much richer than in the optics of these systems. This stimulates to a consider-
able extent the development of acoustic picosecond spectroscopy of paramagnetic and
nuclear systems.

2. Basic model

Let us consider the propagation of Jateral strain waves along the z axis in a one-
dimensional lattice in the approximation of the interaction of nearest neighbours as
the model. Let every atom of this lattice have a spin § = . Following Jacobsen and
Stevens (1963) the Hamiltonian of this system can be written in the following form:

Pk ., o 4

+ ﬁ%("j“ "U,‘-1)S§;+#039n3§>- (1)

Here M is the atomic mass, u; and F; are the displacement and the impulse of
the jth atom along the =z axis, respectively (the strain pulse is linearly polarized),
x is the coefficient of elasticity of a restoring force on the interaction of nearest
neighbours, o is the quartic anharmonicity (in the case of lateral vibrations of a one-
dimensional lattice the cubic anharmonicity is absent (Kosevich and Kovalev 1989)),
k is the Planck constant and g is the constant of spin-lattice interaction. In the
simplest case this interaction may be due to sound modulation of the zx component
of the g Landé tensor (Jacobsen and Stevens 1963). B is the value of the external
magnetic intensity directed along the =z axis, u, is the Bohr magneton, and Si and
SI are the components of the spin operator belonging to the jth atom.

A video pulse is not resonant for any pair of quantum levels. Therefore, a two-
level approximation can be applied here provided that these levels are at a sufficient
distance from any other quantum levels. To illustrate this, two sublevels resulting
from the S-state splitting of a paramagnetic atom in an external magnetic field can
be considered.

From (1) after quantum averaging and employing the Hamiltonian and the Heisen-
berg formalisms, the following set of equations can be obtained:

M'!.:EJ = f‘ﬁ(u"'_‘_l - ZUJ + uj_l) + C![(UJ - Uj_l)z -+ (HJ - uj_l)(uj_i_l - UJ)



Picosecond strain video pulses in 1D paramagnetic latiice 6437

+ ("‘j+1 - “j)zl(uju - 2u; + “j—1) + h(Q/h)(RjH - Rj-—l) 2)

Ri = —wgV;  Vy =Ry~ (a/R)(ujyy — u;_ )W,

Wj = (QIh)(uj-l-l - “j—l)‘“g'

where R; = (Si), V; = (S}), W; = (5}), (...} is the quantum average and w; =
9[1#03/5-
Let us now employ a ‘quasi-continuous approximation’:

Ujpy = ut hOufdz+ (1/2)h%8%u /822 + (1/3)h%3%u /023

4 (1/4)h*8%u /824 ... 4)
Ry, = R:ROR/Oz+ (1/2)h°0°R/02% £ (1/31)R%°R/8°+ .. ..
Here we shall preserve the derivatives over the first order only in the terms which
occur in (2) and (3) linearly. Then we obtain

8%ufd1? = a?8%uf82% + (¢®h?[12)8% /82 + §h2(BufD2)208%ufB2?

&)

+o8R/8z+ %o'hzasﬁfazs (5)
OR[Ot = —w)V Vot =w R — QW ”
aW/at = QV. ©)

Here @ = 2g¢, ¢ = du/dz is the relative strain and a = h{x/M)'/? is the
velocity of sound of a linear wave in a long-wave approximation, § = 3ah?/M and
o = hq/M. From (6) we find that

O*R/O1% = —wiR + w, QW Q)
W[t = —(Q/wy)dR/BE. (8)

Then, following Belenov et af (1988), assume that a pulse is so short that its
duration is

T, K wils )
Then one may write (7) approximately in the form

O?Rf01: = w,OW. (10)
Equations (8) and (9) are integrated using the arbitrary function &(z,1):

W =W_cos# BR[Ot = wyW_, sin 8 (11)

where 8 = ffm Q(z,1t") dt’ is the spin inversion before the action of the strain pulse
(in the case of thermodynamic equilibrium, W, < 0). It is evident that the function
6(z,1) is related to the displacement in the following manner:

89/8t = 2qe = 2q8u/d=z. (12)
Using (11) and (12) we can rewrite (3) in the form
810/81* — 020%0/(82201%) — (a®h?/12)8%/(82%01%)
— (6h%/4q%)[8% /(8=8D)][(88/81)%3%6 /(8281)]
= 2qow, W, (82/82%)(sin 8) + %qawu‘v’l’whz(84/324)(sin g). (13)
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3. Solutions and analysis

For ¢ = 0, equation (13), subject to (12), is transformed into the modified Boussinesq
equation

*u /ot - a*8*u [z — (a®h?[12)8% /82" ~ 6R2(8u/82)20%u /82" = 0. (14)

The strain solution described by this equation has a speed of v > a (Bataille and
Lund 1982). The corresponding solution is

€= 6u/az =(1/h)\/2(v? -~ az}/é'sech[(t - z/v)/'r]
~le (2u/h)\/3(vE/aZ = 1)
If I, > h, then we may ignore acoustic dispersion and acoustic non-linearity, ie.

h = 0 in equation (13). Also, ignoring the anharmonicity of lattice oscillations, we
obtain

(1)

8%8/at" — a8 /(922817 = 2h(q*w, W, /M)(8%}8z%)(sin 6). (16)

Now it is easy to obtain the solution to a relative strain in the form of a steady-state
pulse:

€= \/2run|wm[/M(a — v%) sech[(t - z/v)/fpg
b= gl 2l Wl M (a? = v?)

where W_ < 0. During the pr0pagation of an acoustic pulse, one may observe
its absorptlon and reradiation by the spin system; comsequently v < . Let g4 =
2i8g%uw, f/(Ma?)® < 1; then it s possible to introduce the local time = = 1 — z/a
and the s]ow ooordmate & = puz and expand equation (16) in terms of u, neglecting
the terms ?, 4%, .... Equation (16) is reduced to the sine-Gordon equation:

IO ¢ )

8?0/(8edr) = (M?*a® /2" ) W, sin 6. (18)

For W, > 0, equation (18) has a similar solution depending on &7 in the form of an
oscillatory w-pulse (Lamb 1971, 1980, Belenov et a/ 1988). While propagating along
the lattice the strain amplitude increases in proportion to z: € « z. This amplification
occurs together with pulse compression, which is expressed as an increase in oscillation
frequency in proportion to z. The effects caused by acoustic dispersion and acoustic
non-linearity become considerable as amplification and compression increase. At
present such an analysis has not been provided. For W, < 0, equation (18) has
solutions in the form of soliton pulses. The velocities of these pulses satisfy the
condition v £ a. By introducing a slow coordinate ¢ = Az where A = §h?/a® < 1
and a local time r = ¢—z/a, equation (14) can be reduced to the modified Korteweg-
de Vries equation for ¢ which also possesses soliton solutions. The velocity of solitons
here is v 2 a.

In the presence of both types of dispersion and non-lincarity we may have both
v < a and v > a. In the general case, it is difficult to study cquation (13). A
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solution to (13) is sought in the form of a steady-state pulse depending on z and ¢
as t — z/v. Then after twofold integration we find that

(1 - 02/'02)9” - (azhl’/lzvd})emt - (5’1.2/4(12‘02)9’23”

= 2gow,(W,, [v?)sin 8 + (2/3v*)gow, W_ h%(sin 6)". (19)
It is evident that a localized steady-state puise must correspond to a full spin inversion
(W = +1) and its subsequent restoration to the initial state W = —1. Otherwise, if

a spin after the passage of a signal remains in a superpositional state, this will lead to
its rotation and, as a consequence, to reradiation at a frequency w,. This statement
corresponds to the anzatz

¢ = wsin(8/2). (20)
Here both w and v are the unknown constants subject to determination. Employing
(20}, (12} and (11), we find that

e = (0/2q) sech[(w/2)(t — z/v)] (21)
W = Wl {1 - 2tanh?[(w/2)(t - z/v)]} 22)
R = 4(wq/w) | Wy, | sech[(w/2)(t — z/v)]. 23)

In addition, from (20} it follows that

8" = (w?/4)sin B 8" = (3w*/32)s5in(26) — (w*/8)sin 4. (24)
Substituting (20) and (24) into (19), equating the coefficients of sin 8 and sin(28) to
zero and employing simple algebraic transformations, we find that

Wi = (4] )\ 2hesg] W, | /M (1 — 4kv] fa?) (25)

v = a’[1 + 2k £ /(1 + 2k)? — 4(3 + B)k{1 — k)] /8k(1 — k). (26)
Here k = §/q% and 8 = 16ah*hw,|W_|/(Ma?)% From (25) it follows that for
o > 0 we have the condition on the velocity of pulse propagation:

v < a/2Vk. (27)
Analysis (24) shows that the condition (27) may be satisfied if
k<1 (28)

Here v_ < @, v, < a/2\/E. Thus for & < % it is possible that the two strain pulses
may exist in the form of (21). In addition, there exists another condition on the
parameter 3 expressed by the positive discriminant in equation (26):

B < (1—4k)?/4k(1 - k). (29)
An analogous study shows that for @ < 0 the following statements are possible.
(1) |k| is an arbitrary value, |3| < 3, and a single pulse exists with w, and v,.
(2) |k} > 0.5, |B] > 3, and the two pulses exist with both w, and v,.
In both cases there is no limitation on the velocity of pulse propagation. Here
the condition analogous to (29) must be satisfied:
181 < (1 + 4fke])? /4[k|(1 + |K]). (30)
In the absence of spin-lattice interaction when k < 0, steady-state solitary strain
pulses cannot exist (see (13)). However, the spin—lattice interaction may advance the

formation of such pulses. Note that in this case the video pulse duration 7, ~ w™!
increases as the velocity of its propagation increases.
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4. Concluding remarks

The excitation of coherent strain pulses of duration 7, ~.1-100 ps and internal
pressure p ~ 105-10° bar is possible in a physical sense in solids. Let the density of a
solid be p~ 5 g cm™2 and the velocity of sound in the solid be @ ~ 3 x 10% cm s™1.
Then the pressure p =~ 10? bar and 7, 22 100 ps correspond to ¢ = p/pa? =~ 2x 1073,
Consequently, for 7, ~ 100 ps and p =~ 10° bar, both acoustic non-linearity and
acoustic dispersion may be neglected. In this case, solutions (15) and (16) are valid.
The pressure p = 10° bar and the duration T, =~ 1 ps correspond to ¢ = 0.1 and
!, & 107 cm. Here acoustic non-linearity, acoustic dispersion with spin-acoustic
non-linearity and spin-acoustic dispersion may be of considerable significance.

References

Akhmanov S A, Vysloukh V A and Chirkin § A 1988 Opiics of Fentosccond Laser Pulses (Moscow:
Nauka) p 174

Allen L and Eberly J H 1975 Oprical Resonances and Two-Level Aroms (MNew York: Wiley) ch 2

Al'tshuler $ A 1952 Dokl Akad, Nauk $SSR 85 1235-8 S

Auston D H, Cheung K § Valdmanis J A and Kleinmann D A 1984 Phys. Rev Len 53 1555-8

Azarenkov A N, Al'tshuler G B and Kozlov § A 1991 Opt. Spekirosk. 71 334-9

Baranskii K N 1957 Dokl Akad. Nauk SSSR 114 5179

Bataille K and Lund F 1982 Physica D 6 95-104

Belenov E M, Kryukov P G, Nazarkin A V, Oraevskii A N and Uskov A V 1988 JETP Lett 47 523-5

Belenov E M and MNazarkin A V 1990 JETP Len. 51 283-91

Denisenko G A 1971 Zh Eksp. Teor Fir. 60 2269-73

Eesly G L, Clemens B M and Paddock C A 1987 Appl FPhws. Lew. 50 717-20

Golenishchev-Kutuzov V A, Samartsev V 'V, Solovarov N K and Habibullin B M 1977 Magnetic Quantum
Acoustics (Moscow: Nauka) ch 3

Gusev V E and Karabutov A A 1991 Laser Optoacoustics (Moscow: Nauka) p 292

Jacobsen E A and Stevens K W H 1963 Phys. Rev 129 2036-45

Kopviliem U Kh 1963 I Akad Nauk SSSR, Ser Fiz 27 95-9

Kopvillem U Kk and Nagibarov V R 1963 Fiz. Metall Metalloved. 15 3136

Kosevich A M and Kovalev A § 1989 Introduction to Nonlinear Physics Mechanics (Kiev: Naukova Dumka)
p 121

Kurnit N A, Abella J D and Hartmann S R 1964 Phys, Rev Lett. 6 567-9

Lamb G L 1971 Rev. Mod. Phys. 43 99-124

1980 Elemnents of Soliton Theory (New York: Wiley) ch S

Maimistov A [ and Elyutin § O 1991 Opr Spekerosk, 70 101-5

McCall S L and Hahn E L 1969 Phys. Rev. 183 457-85

Menes M and Bolef D I 1958 Phys. Rev 109 218-9

Nakata 1 1991 L Phys. Soc. Japan 60 712-3

Pake 1 1962 Pararnagnetic Resonance (New York: Wiley) ch 2

Sazonov S V 1991 JETP Len. 53 420-2

Shiren N § 1970 Phys. Rev. B 2 2471-87

Tucker J W and Ramplon V W 1972 Microwave Ulrasonics in Solid Statc Physics (Amsterdam: North-
Holland) ch 6



